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Abstract

Flash flooding is one of the most costly and deadly natural hazards in the United

States and across the globe. This study advances the use of high-resolution

quantitative precipitation forecasts (QPFs) for flash flood forecasting. The

QPFs are derived from a stormscale ensemble prediction system, and used within

a distributed hydrological model framework to yield basin-specific, probabilis-

tic flash flood forecasts (PFFFs). Before creating the PFFFs, it is important

to characterize QPF uncertainty, particularly in terms of location which is the

most problematic for hydrological use of QPFs. The SAL methodology (Wernli

et al., 2008), which stands for structure, amplitude, and location, is used for this

error quantification, with a focus on location. Finally, the PFFF methodology

is proposed that produces probabilistic hydrological forecasts. The main advan-

tages of this method are: 1) identifying specific basin scales that are forecast to
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be impacted by flash flooding; 2) yielding probabilistic information about the

forecast hydrologic response that accounts for the locational uncertainties of the

QPFs; 3) improving lead time by using stormscale NWP ensemble forecasts; and

4) not requiring multiple simulations, which are computationally demanding.

Keywords: flash flood, probabilistic, NWP, distributed modeling

1. Introduction

According to the U.S. Natural Hazard Statistics, flooding is the number one

weather-related killer over a 30-year average (National Weather Service, 2014).

In particular, flash flooding can be very dangerous due to its short timescales.

Generally, flash floods are defined as flooding that occurs within six hours of5

a causative event (Hapuarachchi et al., 2011). They tend to occur in small

headwater catchments, less than a few hundred square kilometers, due in part

because these basins respond quickly to excessive rainfall amounts that fall in

the short time periods characterized by flash flood-producing events (Kelsch,

2001). Unfortunately, these small basins can also be located in urban areas10

where the effects of flash flooding on society can be substantial.

In the simplest sense, as described by Doswell III et al. (1996), “a flash

flood event is the concatenation of a meteorological event with a particular

hydrological situation.” Meteorologically, it is crucial to properly predict not

only the occurrence of a rain event, but more importantly, the intensity and15

movement of the rainfall to accurately depict the conditions of a flash flood

event. However, the meteorological component is only half of the problem.

Hydrologically, it is necessary to understand the antecedent soil conditions, land

and soil characteristics, topography, and basin size to know how the rainfall will

impact the basin response (Davis, 2001).20

Therefore, this study focused on both sides of the problem: inputting high-

resolution quantitative precipitation forecasts (QPFs), that attempt to capture
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the dynamics of heavy rainfall (e.g. cell motion, development, intensity, du-

ration) into a distributed hydrological model, that will take into account the

necessary hydrological factors. It should be noted that the focus of this paper25

will be on the meteorological component and its application in a hydrological

framework.

In regards to the meteorological component, several studies have examined

the accuracy of high-resolution, convection-allowing numerical weather predic-

tion (NWP) models. Simply considering resolution, Roberts (2005) showed30

that higher resolution NWP models (1- or 4-km) have more reliable forecasts

of flood-producing rainfall (up to 7 hours ahead) as compared to lower res-

olution (12- or 60-km) models. Schwartz et al. (2009) delved into the issue

of convection-allowing versus convection-parameterizing models; the difference

being that convection-allowing models can generate and resolve convection,35

while the parameterizing models represent convective processes that occur at

sub-pixel resolution using a statistical approach. They found that higher res-

olution (2- and 4-km), convection-allowing models were more skillful at pre-

dicting amplitude and location of heavy rainfall as compared to the 12-km,

convection-parameterizing model. Furthermore, Clark et al. (2009) compared40

a high-resolution, convection-allowing ensemble with a coarser, parameterized-

convection model. They found the ensemble to produce more skillful precipita-

tion forecasts, even with a small number of members, thus showing the promise

of such ensembles.

Particular to the use of high-resolution QPFs comes the issue of displacement45

errors of finescale features (Ebert, 2008). These small errors can have significant

effects on flash flood prediction since flash flooding is very location-dependent.

The smallest offset of heavy rainfall can make the difference between an event

and non-event because basins prone to flash flooding are commonly quite small
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(Vincendon et al., 2011). Probabilistic forecasting offers the potential to quan-50

tify this locational uncertainty, thus it is the focus of our study.

In regards to the hydrological component, the use of hydrological models

for flood forecasting has been commonplace for many years (Singh et al., 1995).

However, their use for flash flood forecasting is at a relative infancy (Reed

et al., 2007). More and more operational hydrological models incorporate radar-55

derived estimates of rainfall as their main precipitation input. These estimates

can have resolutions as high as 1-km with a 2-min update cycle, and once input

into the model, provide a good depiction of the present state of the hydrologic

cycle. However, the radar estimates are also subject to uncertainties (Zhang

et al., 2015), but more importantly, only allow for hydrological modeling once60

the water is already hitting the ground. The time interval between heavy rainfall

observations and flash flooding can be on the order of minutes, especially for

small (sometimes, urban) basins. This short lead time makes it imperative to

receive information prior to radar measurements of rainfall.

Increasing the lead time for these events is necessary in order to better65

protect life and property (Stensrud et al., 2009; Hapuarachchi et al., 2011; Vin-

cendon et al., 2011). The best way to do this is by improving guidance to hydro-

logical models via inputting quantitative precipitation forecasts, derived from

numerical weather prediction models, into the models (Collier, 2007). Fritsch &

Carbone (2004) discussed the need to focus on warm-season QPF improvement,70

with one of the main purposes being the application to hydrological forecast-

ing. They argued that a major research area needs to be determining whether

QPFs are valuable to hydrological prediction, especially since hydrological pre-

dictions “are among the principal societal payoffs resulting from warm-season

QPF improvement...”. Our study assumes that QPFs on their own give an es-75

timate of the relative location and intensity of future rainfall, however, giving
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them a hydrologic relevance is the only way they will be useful for flash flood

forecasting.

In particular, the desire for ensembles of QPFs (no matter the resolution) as

inputs for hydrological models is apparent in the field of flash flood forecasting80

(Cloke & Pappenberger, 2009). The methods thus far have been to: 1) input

individual members of a QPF ensemble directly into a hydrological model to

create an ensemble of hydrologic forecasts (Zappa et al., 2008; Verbunt et al.,

2007), 2) perturb one deterministic QPF to create an ensemble for input into the

hydrological model (Vincendon et al., 2011), or 3) perturb ensemble members85

and hydrologic model parameters. Our study is unique in that it creates a high-

resolution deterministic representative of all ensemble members (via probability

matching) for input into the hydrological model. This method cuts back the

computational expense (compared to running multiple simulations), while still

accounting for the optimal location defined by the ensemble mean, and the90

rainfall intensity represented by the entire QPF ensemble.

With such ensemble hydrologic outputs, probabilistic flash flood forecast-

ing has been discussed in the above studies, and others (Krzysztofowicz, 2001;

Drobinski et al., 2014). This study’s method is novel in that it creates a fi-

nal probabilistic product not from considering the fraction of hydrologic output95

members that exceeds a certain discharge threshold, but rather from the multi-

plication of meteorological and hydrological probabilistic products. In brief, the

ultimate goal of this study is to derive basin-specific probabilistic flash flood

forecasts (PFFFs) using an ensemble of forecast members (QPFs), combined

with simulated basin responses (derived from a distributed hydrological model),100

in order to identify basin scales and lead times for flash flood prediction. It is

noted that the proposed method deals with locational uncertainties in QPFs

alone. Future methods should also consider additional errors in timing, storm
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structure, and amplitude. The rest of this paper is outlined as follows: Section 2

describes the two precipitation datasets and the distributed hydrological model105

used in this study; Section 3 explains the error quantification procedure that

was done to find the biases related to the QPFs; Section 4 details the methodol-

ogy conducted to create the PFFFs, and is followed by Section 5 discussing the

results from the case study; and finally, Section 6 summarizes the conclusions

from the study.110

2. Datasets

2.1. Forecast Rainfall

This study relies on the use of a NWP model that is capable of producing

stormscale QPFs. These QPFs serve as the input precipitation field for the

hydrological model. As part of the National Oceanic and Atmospheric Admin-115

istration (NOAA) Hazardous Weather Testbed (HWT) Spring Experiment, the

Center for Analysis and Prediction of Storms (CAPS) at the University of Okla-

homa (OU) has developed a multi-model storm-scale ensemble forecast (SSEF)

in real-time (Kong et al., 2011). Since the 2007 Spring Experiment, CAPS has

been improving the SSEF each year to include such items as radar data as-120

similation, more members, larger domains, post-processed products, and longer

forecasts.

QPFs produced during the 2010-2012 NOAA HWT Spring Experiments have

a 4-km resolution, are produced hourly, and cover the entire continental U.S.

(CONUS). Only ensemble members that included assimilated radar data into125

their initial conditions were used, since this information is useful in adjusting

initial model states with the aim of improving rainfall forecasts. All mem-

bers were initialized at 00Z and produced hourly QPFs up to 36 hours ahead.

Table 1 shows the overall details of each year’s ensemble used in this study,
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including the number of members, number of days the ensemble was run, and130

number of forecast hours. The annual CAPS Spring Experiment Program Plans

(http://hwt.nssl.noaa.gov/efp/) provide detailed information about each

member, including their initial and boundary conditions, microphysics scheme,

land surface model, and planetary boundary layer (PBL) scheme. The case

study used to introduce our new methodology, as described in later sections,135

occurs during 2010. The next paragraph will go into more depth about the

ensemble members of this particular year, but the interested reader is referred

to the program website provided above for even more information about the

members, as well as the experimental design for 2011 and 2012.

For 2010, the CAPS ensemble had 24 members: 18 members that were pro-140

duced using the Weather Research and Forecast (WRF) Advanced Research

WRF core (ARW; Skamarock et al. 2005), four members produced using the

WRF Nonhydrostatic Mesoscale Model (NMM; Janjic 2003), one member pro-

duced using the CAPS Advanced Regional Prediction System (ARPS; Xue et al.

2003), and one produced at the Storm Prediction Center (SPC). The WRF145

model cores used V3.1.1 (Kong et al., 2011), which included new microphysics

and PBL schemes. All members were initialized with the NAM 12-km 00Z

analyses as background. A subset of the members had initial condition per-

turbations, which were obtained from the National Center for Environmental

Prediction (NCEP) Short-Range Ensemble Forecast (SREF; Du et al. 2006).150

Another subset tested physics perturbations only to assess the impact of mi-

crophysics and PBL schemes. The ARPS three-dimensional variational data

assimilation (3DVAR) and Cloud Analysis package (Gao et al., 2004) was used

to assimilate Doppler radar radial wind and reflectivity data from the national

network of WSR-88Ds. Since the NMM has a different horizontal grid compared155

to both the ARW and ARPS (E-grid vs. C-grid), the NMM forecasts were con-
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verted onto the same grid as the other two. More information is available in

Xue et al. (2010).

Year
Number of
Members

Number of
Analysis Days

Number of
Forecast Hours

2010 24 36 30
2011 45 35 36
2012 24 35 36

Table 1: Details of the CAPS SSEF for the years 2010, 2011, and 2012.

2.2. Observed Rainfall

To complete the error analysis, the hourly QPFs were compared to hourly160

quantitative precipitation estimates (QPEs) of the same resolution, 4-km. The

selected QPEs were the NCEP Stage IV QPEs (Lin & Mitchell, 2005), which

are derived from mosaicking hourly precipitation analyses from each of the 12

River Forecast Centers (RFCs) across the CONUS (see Figure 1). These QPEs

are considered multi-sensor products, meaning they are derived from both radar165

and gauge observations that are manually quality-controlled at the individual

RFCs, then sent to NCEP for mosaicking.

2.3. The CREST Distributed Hydrological Model

The Coupled Routing and Excess STorage (CREST; Wang et al. 2011)

model is a distributed hydrological model capable of simulating both spatial170

and temporal variations in surface and subsurface water fluxes, as well as cell-

to-cell water storage. It was jointly created by the University of Oklahoma

(http://hydro.ou.edu/research/crest/) and the National Aeronautics and

Space Administration (NASA) SERVIR project. Physically-based spatially-

distributed models, such as CREST, are the most capable for use in flash flood175

prediction because they provide streamflow estimates at any location within the

basin (not just at the outlet). Additionally, CREST allows for upstream routed
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water to reenter the soil moisture reservoirs of downstream cells, which is what

happens naturally in losing and gaining streams. The CREST model has user-

defined grid cell resolution, which allows for its application at any scale from180

basin-specific to global. The CREST model will be one of the core hydrologic

models in the Flooded Locations And Simulated Hydrographs (FLASH) project

for improving flash flood prediction in the U.S. National Weather Service. The

model can be driven by satellite-based products, rain gauge observations, radar-

derived precipitation estimates, or NWP QPFs. The reader is pointed to Wang185

et al. (2011) for the detailed physical equations in the CREST model.

For this study, the CREST model was forced with the CAPS QPFs, and run

without calibration. These forecasts were later compared to CREST outputs

forced by the Stage IV QPEs. While this study’s final product is a probabilis-

tic one, the CREST model outputs discharge in m3/s. Thus, discharge was190

converted to return period via a reanalysis process described in Section 4.2 in

order to complete this study. The soil information comes from a multi-layer,

CONUS-wide dataset developed at the Pennsylvania State University College of

Earth and Mineral Sciences (http://www.soilinfo.psu.edu/). CONUS-SOIL

is a soil characteristics dataset that provides geographic layers of many differ-195

ent hydrological parameters (e.g. porosity and available water capacity), de-

rived from the U.S. Department of Agriculture’s State Soil Geographic Database

(STATSGO).

3. QPF Error Quantification

Before using the CAPS SSEF of QPFs within the hydrological framework, it200

is important to understand the error characteristics of the individual members in

order to allow for better interpretation of the final results. Because location error

is important for flash flood forecasting, using evaluation metrics that incorporate

9

http://www.soilinfo.psu.edu/


location errors is vital (Gilleland et al., 2009).

Additionally, with the use of high-resolution QPFs, the evaluation metrics205

must overcome the issue of displacement errors of finescale features (Ebert,

2008). One of the main obstacles of these displacement errors is the occurrence

of “double penalties,” or rather, when the forecast is penalized twice for ap-

pearing to have missed the observed event when it is really just offset slightly

(Clark et al., 2010). With such a penalization, it becomes necessary to verify210

the forecasts with techniques that can quantify the displacements. Traditional

metrics for evaluating forecasts (e.g. root mean square error, RMSE) do not

capture the true quality associated with the forecasts (Kain et al., 2003), so new

verification metrics must be used (Gilleland et al., 2009).

Wernli et al. (2008) (hereafter, SAL2008) developed a technique called SAL215

which stands for structure, amplitude, and location, the three characteristics

evaluated for the precipitation forecasts. It is an object-based verification tech-

nique, meaning it requires criteria to define an enclosed precipitation object in

order to conduct the analyses. The forecast and observed objects are compared

in terms of structure (S), amplitude (A), and location (L) in order to explain220

the errors associated with the forecast member.

Wernli et al. (2009) (hereafter, SAL2009) proved that the SAL method is

a reliable error evaluation for stormscale, convective objects by comparing it

with classical error metrics (like RMSE) that are gridpoint-based, as opposed

to object-based. In particular, SAL2009 study was similar to this study because225

it compared high-resolution, hourly QPFs. They found that the SAL technique

does provide useful guidance for QPFs, which is sometimes more meaningful

than the gridpoint-based measures (in particular, for intense events). Addition-

ally, Vincendon et al. (2011) used SAL to create error statistics used in their

perturbation method, and found that location perturbations of the rainfall ob-230
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jects had the strongest impact on the skill of the ensemble. Further, Zimmer

& Wernli (2011) extended the SAL method by introducing a fuzzy approach

to account for timing errors in QPFs, which can also cause “double penalties”.

They found that both spatial and temporal errors are accounted for when using

the SAL method, and timing errors can be quantified with the fuzzy approach.235

This is an important finding because it further explains QPF errors character-

istics, and provides more explicit verification results. Future work with SAL

should consider this extension to help better explain locational uncertainties.

The SAL method is an object-based verification technique, meaning it re-

quires criteria to define an enclosed precipitation object in order to conduct the240

analyses. The forecast and observed objects are compared in terms of structure

(S), amplitude (A), and location (L) in order to explain the errors associated

with the forecast member.

Because this technique is what Gilleland et al. (2009) defines as “features-

based,” the objects must be identified in both the forecast (CAPS) and observed245

(Stage IV) fields, as well as the domain in which they will be compared. SAL2009

advocates for smaller domain sizes for doing the verification. They argue that

large domains may contain different meteorological regimes that can affect the

results (e.g. the convective QPF did well, but the stratiform rainband may not).

Thus, it is necessary to limit the domain to be small enough that QPF regimes250

are isolated.

With this in mind, the domains were limited to areas the U.S. Geological

Survey (USGS) calls hydrologic units. Each unit is defined by the drainage area

of a major river, or a combination of drainage areas from several major rivers,

within the United States (Seaber et al., 1987). There are 21 regions within the255

U.S., but only 18 that make up the CONUS (see Figure 2). While these regions

do not denote different meteorological regimes (as recommended by SAL2009),
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they are small enough to suffice the SAL requirements. But more importantly,

using hydrologic unit regions (hereby, HUC regions) for this study’s domains

gives the analysis some hydrologic relevance by allowing for the comparison of260

rainfall objects that will ultimately have similar drainage paths, which is the

primary goal of properly predicting the location of flash flooding.

Within each of the 18 HUC regions, only the largest, spatially continuous

object for each the forecast and observed fields was compared at each hour. This

step deviates from the original SAL2008 procedure, which used all objects in265

the domain for comparison. This decision was made because, for high-resolution

hourly rainfall, there can be many discrete objects. However, many may be

small, spurious objects (e.g. trailing stratiform) that are secondary to a larger,

more mature object (e.g. mesoscale convective system). Thus, only comparing

the largest forecast and observed object in each HUC region (i.e. up to 18270

analyses per hour) should help reduce biased SAL errors. With this change, the

descriptions below for each of the SAL components are based on our one-to-one

object comparison, and may differ from the original SAL2008 definitions.

The structure (S) element corresponds to the normalized difference in vol-

ume between the forecast and observed objects. The idea is to compare the275

size and shape of the objects, and leave the amplitude element to compare the

intensity of them. S is bounded by [-2, 2], with zero being a perfect score. Pos-

itive values denote that the forecast field is too large and/or too flat, whereas

negative values mean the forecast object is too small and/or too peaked. For

example, from an applied standpoint, large values of S may show the model280

predicted widespread, stratiform precipitation when there was actually a small,

convective event. This information clearly explains the importance of S being

based on volumes, as it gives information about the areal coverage, as well as

peakedness of an event.
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The amplitude (A) element signifies the normalized difference of the object-285

averaged precipitation values. Thus, A is meant to compare the average amount

of precipitation per grid point in each the forecast and observed objects, hence

it being the element that describes the overall intensity of the objects. A is

bounded by [-2, 2], with zero being a perfect score. A positive value of A de-

notes that the forecast object overestimated the object-averaged rainfall, while290

a negative value means the forecast object underestimated it. A = +2 means

that the CAPS forecast produced a precipitation object, while the Stage IV

product did not (i.e. a false alarm). Similarly, for A = -2, the Stage IV obser-

vation has an object when the CAPS forecast does not (i.e. a missed event).

The amplitude element is different from the structure element because S gives295

information on the size and shape of the object, while A tells about the overall

magnitude of the object’s rainfall amount.

Finally, the location (L) element corresponds to the normalized distance

between the centers of mass of the modeled and observed precipitation objects.

L is within [0, 1], with zero being a perfect forecast of identical centers of mass.300

It is noted here and in SAL2008 that one caveat of this method is that L is not

sensitive to rotation about the center of mass.

3.1. SAL Results

The SAL analyses were completed for all three years of data, for every avail-

able CAPS member at every available forecast hour over the conterminous U.S.305

Using Table 1, the total sample size is approximately 112, 860. Some members

occasionally had missing data, but no member had enough missing to bias its

results. The values of S, A, and L were analyzed as a function of forecast hour.

The reader is reminded that the SAL methodology creates a perfect verification

score when S, A, and L all have values of zero.310

Figure 3 is a time series of average SAL values at every forecast hour (f00
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to f36 hours) represented in this study. To create this plot, first, the structure,

amplitude, and location values were each averaged over all members per hour,

for each day of each year. This gives one value of S, A, and L for every hour

of the entire three-year analysis. Then, all of the days (from all three years)315

were averaged to give one value at every forecast hour. Therefore, there was

equal weighting between all days (i.e. no dependence on the number of analysis

days in a year). It should be noted that after hour 30, the results only show

information from 2011 and 2012, when the CAPS lengthened its forecast period

to 36 hours.320

The top panel shows that S and A have a diurnal pattern, with quick spikes

in positive errors within the first few forecast hours, only to slowly decrease

towards zero during f03 to f12. Then, the values gradually increase until f24-

f26, when they begin to decrease again. S slightly increases from f30 through

f36, while A continues to diminish through the end of the forecast period. A325

potential explanation for this pattern is that the CAPS ensemble is initialized

at 0000 UTC, which is generally when there is convection in the late afternoon

hours. High-resolution NWP models have notorious difficulty capturing warm-

season convective initiation (Fritsch & Carbone, 2004), so the high S and A

errors at the beginning of the forecast period and 24 hours later could be linked330

to this NWP problem. In terms of structure and amplitude, the CAPS ensemble

predicts objects that are too large and/or too flat while overestimating the

object-averaged precipitation. Physically speaking, one interpretation is that

the CAPS ensemble generally predicts widespread heavy precipitation when

there is actually a weak convective event.335

However, the bottom panel of Figure 3 (with scale modified to highlight L

errors) shows the L element steadily increases throughout the entire time period,

and has no diurnal dependence. This is an important result because it shows
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that location errors in the CAPS high-resolution QPFs increase the further you

get from model initialization. Thus, it gets progressively harder for the model to340

properly predict the location of heavy rainfall objects. This finding justifies this

study’s methodology of using probabilistic forecasts by exhibiting the need for

quantifying location uncertainty associated with the QPFs. This is especially

true for flash-flood forecasting which heavily relies on locational accuracy.

4. PFFF Methodology345

Now that we have some understanding of the errors associated with the

ensemble of QPFs, they can be utilized within a hydrologic framework. As

stated previously, location is the primary component for accurately forecasting

flash flooding. The hydrologic characteristics (e.g. basin size, slope, soil type

and saturation) and meteorological factors (e.g. rainfall intensity and duration)350

dictate the potential for flash flooding, but actually predicting the location of

the rainfall dictates the susceptibility for flash flooding. This susceptibility is

the hardest to forecast at reasonable time scales, yet is the most important

question in terms of societal impacts. For the reasons mentioned in Section 1,

this study works towards this challenge by creating PFFFs that identify basin355

scales and lead times for flash flood prediction. The process for creating these

PFFFs is the novel portion of this work, and therefore, will be the focus of the

rest of this paper.

4.1. The Case Study

On June 14, 2010, Oklahoma City, Oklahoma, USA experienced significant360

flash flooding during the morning hours. Before the rainfall arrived in the

metropolitan, activity began late the night before in northwest Oklahoma. A

slow-moving cold front existed from the northern Texas panhandle up through
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southwest Kansas, with an associated outflow boundary moving eastward. Thun-

derstorms initiated ahead of this cold front, and multiplied as they moved east-365

ward along the outflow boundary. In the early morning hours of the 14th, the

outflow boundary shifted toward central Oklahoma, and was met by a south-

westerly moist low-level jet. This encounter further strengthened the devel-

opment of thunderstorms near the boundary, dumping anomalous amounts of

rainfall over Oklahoma City.370

Figure 4 shows the 24-hour radar-estimated rainfall totals over the Oklahoma

City metropolitan from 2000 UTC on June 13th through 2000 UTC on June

14th. The highest total was in the northern extent of the area, with a gauge-

measured amount of 313 mm (National Weather Service, 2010). This event

recorded the highest all-time (1880 to present) daily precipitation for Oklahoma375

City at 194 mm. Luckily, no lives were lost, but significant damage to property

took many days to clean up.

The methodology for creating the PFFFs requires many steps that are not

always linear. Because of this, a schematic was created to illustrate the process

(Figure 5), and the rest of this section will be devoted to walking the reader380

through this schematic. As a reminder, the CAPS SSEF was initiated at 0000

UTC. Therefore, because this event affected the Oklahoma City metro mainly

during the morning and early afternoon hours, all of the steps in the method-

ology that require hourly plots were only calculated within the hours of 1300

UTC through 1800 UTC (i.e., 0800 to 1300 local time), of which only a subset385

of those hours will be shown.

4.2. Calculating Probabilities of Exceedance

The first step to calculating a probability of exceedance (POE) product is

to prepare a QPF input for the hydrological model. Because it is computa-

tionally expensive to use every member’s QPF at every hour, an alternative390
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is to calculate a single QPF product that adequately describes the ensemble.

For this study, the probability-matched mean (PM) was chosen to represent the

ensemble as a single input into the hydrological model.

As defined by Ebert (2001), the probability-matched mean has the same

spatial pattern as the ensemble mean, and the same frequency distribution of395

rain rates as the ensemble of QPFs. The ensemble mean generally captures

the location of the rain center, but “smears” the rain rates, such that it re-

duces the maximum and increases the minimum (as would be expected by a

mean). Individual members do not always capture the right location, but they

maintain the extreme rain rates that are important for predicting flash flooding.400

Thus, the PM uses the strengths of each component, while improving upon their

weaknesses.

To calculate it, two sorted lists are made: 1) the ensemble mean values, and

2) all member values (n = 24, with n being the number of members in the 2010

CAPS ensemble). In order to sample both distributions entirely, a matching is405

done such that every nth value from the member list is matched to the ensemble

list. This makes the lists the same size. Finally, the member values replace the

mean values, but in the geographic locations of the mean value. Thus, the final

product is a grid where the highest member value is in the location of the highest

mean value, and the nth member value is in the second highest mean value, and410

so on.

Clark et al. (2012), Kong et al. (2011), and Xue et al. (2010) each calculated

the PM for the 2010 CAPS SSEF, the same as used here. Figure 6, from

Xue et al. (2010), shows that the SSEF PM outperforms its own ensemble

mean, the NCEP short-range ensemble forecast (SREF) 32-km ensemble mean415

and PM, and the 12-km NCEP North American Model (NAM) for a 6-hour

accumulation period during this event. These findings validate the use of the
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4-km CAPS SSEF PM as a viable representation of the ensemble for input into

the hydrological model.

Before using the PM to force the CREST hydrological model, the next step is420

to conduct a reanalysis of observed data in order to have a reference of historical

streamflow. The purpose of this reanalysis is to create a reference from simulated

data so that the rarity or severity of the forecasts can be evaluated at grid

points where there are no stream gauge measurements. This creates a longer-

term description of the considered basin that better explains the nature of its425

streamflow. To complete the reanalysis, the CREST model was run using a

priori parameters from 2002 through 2012 (for 11 total years of data). This

time period was chosen because it was the longest period of record for the Stage

IV product. Hourly NCEP Stage IV QPEs served as the precipitation input,

and three-hourly potential evapotranspiration data came from the NCEP North430

American Regional Reanalysis (NARR) project. The NARR project uses the

high-resolution NCEP Eta model and its three-dimensional data assimilation

(3DVAR) technique to assimilate observations of many atmospheric variables,

including potential evapotranspiration, into the analyses (Mesinger et al., 2006).

Because this process requires a long period of data, and thus, a lot of com-435

puting time, the reanalysis was only completed over the Deep Fork river basin.

In particular, USGS gauge 07242380 was modeled as the basin outlet. This

basin was known to have experienced flooding during this case, so it was a good

choice for the analyses. The reanalysis saved a maximum discharge value for

every grid cell in the basin for every year. These stored discharge values are440

then used as the annual peaks for computing the Log-Pearson III flood fre-

quency relationship that converts between discharge (in cms) and return period

(in years). Thus, the final product of the reanalysis was a probability density

function (PDF) of historically simulated streamflow at each grid cell within the
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basin that can then be used as a reference to estimate the yearly recurrence of445

streamflow of specific magnitudes at each grid cell in the basin.

After return periods were established, the PM was input into the CREST

model at each hour during the event (1300 through 1800 UTC). The output was

simulated streamflow (in cms) that was converted to estimated return period (in

years) at each grid cell, based on the reanalysis. The estimated return period of450

the grid cell was then compared to the cell’s flow accumulation (i.e. catchment

area or basin scale), and plotted. Figure 7 shows these plots for 1400 and 1700

UTC during the event, with each point representing a grid cell within the basin

that registered above a one-year return period during that hour. The axes were

converted from the log values to the true values of each variable so to better455

interpret the data.

Because the true return period at each cell within the basin is unknown, the

distribution of the return period as a function of the flow accumulation is con-

sidered. It is expected that return period will depend on catchment size at each

grid cell, since the amount of water a basin can convey is strongly dependent on460

its size. As can be seen in Figure 7, the data sample alone may not be sufficient

to describe the distribution of return period for all flow accumulation values.

For example, at 1400 UTC in Figure 7, there are only a few points that provide

information for basin scales greater than 55 km2. Thus, the distributions of

return period conditioned on the basin scale were modeled with the Generalized465

Additive Models for Location, Scale, and Shape (GAMLSS; Stasinopoulos &

Rigby 2007). GAMLSS is a semi-parametric approach which aims at modeling

a response variable’s distribution (here, the return period). Two main assump-

tions are made: (i) the response variable is a random variable following a known

parametric distribution with density conditional on parameters, µ and σ, and470

(ii) the response variables are mutually independent. Each parameter is mod-
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eled as a function of the flow accumulation (i.e. the explanatory variable) using

smooth link functions (i.e. locally weighted scatterplot smoothing, LOESS).

For the sake of simplicity, several two-parameter density functions (with the

first two moments: location µ and scale σ) were tested for this basin, and the475

Gamma distribution best fit the data. Moving across different basin scales,

conditional distributions of return period were interpolated across scales not

well represented in this particular basin. For example, if a basin has no interior

grid cells with a catchment size of 10 km2, then the semi-parametric model

would interpolate data from the surrounding catchment sizes in order to provide480

information for a 10-km2 size. The final result (as seen in Figure 7) is a smooth

quantile map of return periods for all scales. Here, the conditional median is

yellow, meaning that 50% of catchments are expected to exceed a given return

period. For instance, for 1700 UTC in Figure 7, at a 20-km2 catchment size,

50% of catchments of that size would be expected to exceed a 7-year return485

period. Using the quantiles, instead of the individual points of these plots, to

explain the return period patterns is better because the method is not limited

to small sample sizes or lack of data at certain flow accumulations.

These plots also show that, at the start of the period (1400 UTC), return

periods are large in cells with small flow accumulations (i.e. small catchments).490

This is indicative of flash flood prone cells, as they are more affected by rapid

onsets of heavy rainfall and concomitant flash flooding over short amounts of

time. At 1400 UTC, there are very few cells with large catchment areas that

have high return periods. However, at 1700 UTC, the quantile peaks shift

to the right, demonstrating that water is flowing downstream into the larger495

catchments. Return periods remain high for the small catchments because this

was an event where the storms generated in a “train effect” and continued

to impact the study region at small basin scales. Even with the increased
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quantile values in the medium-sized catchments, the largest catchments still

had relatively low values throughout the period. These large cells are more500

capable of handling large amounts of rainfall, thus, taking far more water over

longer durations to flood. This ”wave” effect with time was expected in order

to make sure the CREST model was properly simulating the progression of such

a flash flood event.

Using the flow accumulation versus PM return period plots, the final step505

is to calculate probabilities of exceedance at various return periods. Getting

these POEs is the last step in the hydrologically-relevant component of the

PFFF, as denoted by the right side of the schematic in Figure 5. The POEs are

based on the quantiles described above. For a given return period, the quantiles

that exceed the return period determine the POE. Remember, these quantiles510

were interpolated across all catchment sizes; therefore, the POE for a particular

return period (at a particular time) changes as a function of catchment size.

For example, consider the probability of exceeding a 20-year return period

at 1700 UTC in Figure 7. We have annotated a red line across the plot at that

return period. At a 1-km2 catchment size, all quantiles above 0.4% exceed the515

return period. Therefore, the POE is equal to 99.6%, at this basin scale. Moving

across the 20-year red line to the 20-km2 catchment size, the 75th percentile is

located here. Thus, the POE equals 25%. Finally, if you continue to follow the

20-year return period out to a 148-km2 catchment, the line is between the 98th

and 99.6th percentiles. Even though there are no grid cells that exceed this520

return period at this size, the GAMLSS model fit the distribution to account

for the small sample size of the basin. Therefore, the POE(RP ≥ 20 yrs) ≈

1% at this flow accumulation (since it is between the two quantiles). Using

the method of following a particular return period horizontally across all basin

scales, it is possible to know the POE for every grid cell in the basin. This study525
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considered the 5-year and 50-year return periods for comparison, and calculated

their POEs for each forecast hour of the event.

4.3. Creating a Probabilistic QPF Field

The meteorological component of calculating the PFFFs is the probabilistic

QPF (PQPF) field, as shown by the left side of Figure 5. This step can be530

done in parallel, since it does not directly rely on anything but the original

CAPS QPFs. The purpose of incorporating a PQPF field, in addition to the

POE field, is to account for the spatial uncertainty related to the ensemble

of QPFs. Otherwise, the process would rely solely on the PM field, whose

location is entirely dependent on that of the ensemble mean. Even though the535

ensemble mean is a good deterministic predictor of the rain center (as previously

described), a PQPF field adds value to the final product by allowing for error

in the spatial extent, in terms of providing a weighted probability map.

To calculate a PQPF field, the first step is to create a cumulative precipi-

tation map for each member over the entire forecast period. Because this case540

study was in 2010, the CAPS ensemble had QPFs up to 30 hours in advance.

Next, a rainfall threshold is determined, where a grid cell receives a 1 for ex-

ceeding, or a 0 for not exceeding. This threshold ideally highlights the event

being considered, without being too focused or too broad. The subjective choice

for this study was a threshold of greater than or equal to 100 mm in 30 hours.545

Further work should be conducted to automate this threshold selection, such

as considering the average recurrence interval of forecast rainfall (e.g., 25-yr

rainfall event).

These member binary grids are then used to create a neighborhood probabil-

ity map of exceeding the threshold. At each grid cell, a 40-km radius is sampled550

(as done by Schwartz et al. (2010)), and if any surrounding cells have a one (i.e.

exceed the threshold), then that cell is given a 1. This introduces some spatial
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uncertainty by allowing neighboring cells to affect the value of the given cell.

The schematic in Figure 8 can be used to understand the process of creating a

neighborhood binary grid for one member. Once this neighborhood binary grid555

is calculated for every member, the member grids are summed together, and

then divided by the total number of members. Thus, the neighborhood prob-

ability map can be explained as the confidence the members have in exceeding

the threshold within 40-km of a point. For instance, a cell with 100% denotes

every member had a cell within 40-km exceeding the threshold.560

To further account for the spatial uncertainty, a 2-D Gaussian smoother is

applied to the neighborhood probability map, similar to the “practically perfect”

forecast created in Hitchens et al. (2013). The smoother, which is applied for

every grid cell in the domain, takes into consideration the surrounding grid cells’

values when calculating that cell’s final value. This is done such that the weights565

of the surrounding grid cells (within a radius of influence, here 40-km) drop off

with increasing distance from the considered cell. Kong et al. (2011) completed

this neighborhood smoothing with the same 2010 CAPS dataset, and found that

the probabilistic skill scores increased compared to no smoothing.

Once this process has been completed throughout the entire domain, the final570

product is a Gaussian-smoothed, 40-km neighborhood PQPF map of exceeding

the threshold of 100mm/30hr. Figure 9 shows this PQPF field for the Oklahoma

City event. Notice how the map focuses the threat (≥ 80%) over Oklahoma,

extending into eastern Kansas and western Missouri.

4.4. Creating the Probabilistic Flash Flood Forecast575

The final step in the process to create a PFFF is to multiply the hydrologic

model output (i.e. the POEs) by the meteorological ensemble information (i.e.

PQPFs). To do this, first, the fields need to be at the same grid size. Using the

GAMLSS interpolation of return periods across basin scales (see Section 4.2),
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POEs were calculated based on their catchment area over the CONUS-wide580

flow accumulation grid. This is a fundamental step in our method’s process

because it creates return period estimates across all basin scales. With the two

maps on the same grid size, they can be multiplied, and the final product is

a CONUS-wide PFFF. Since the POE map is dependent on a chosen return

period, so is the PFFF. Thus, each PFFF can be described as a map of basin-585

scale susceptibility for the given return period (e.g. “probabilistic flash flood

forecast for exceeding a five-year return period”).

5. Results

Figure 10 shows the PFFF for exceeding a five-year return period at 1400

and 1700 UTC during the June 14, 2010 Oklahoma City flash flood event. To590

properly interpret these maps, the reader should focus on the stream and river

pixels. When the POE field is multiplied by the PQPF field, the overland grid

cells take on the PQPF values entirely, due to being multiplied by approximately

one. Hence, when looking at these overland areas, the high probabilities that

existed in the PQPF map are clearly outlined in the PFFF.595

Beginning at 1400 UTC (Figure 10, left), probabilities increase significantly

over the Oklahoma City metro, with some of the very small headwater basins

having probabilities near 100% within the main threat area (as outlined by the

overland cells). As time progresses, the downstream basins start having the

higher (warmer-colored) probabilities. The smaller, upstream basins maintain600

high values, as well, because this was a training echo event with high rain rates

for multiple hours. This example, using the five-year return period, displays the

value of this product. It provides an understandable quantity (via probabilities)

that explains the threat of flash flooding across scales, using high resolution

information which is necessary to capture flash-flood producing rainfall.605
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It is interesting to compare the PFFFs for a 5-year and a 50-year return

period (Figure 11), to further understand how the threat changes based on the

likelihood of the event. For both return periods, the PQPF-influenced overland

grid cells highlight the threat area in the background overland cells. Overall, the

50-year return period plot (Figure 11, right) does not have as high PFFFs as the610

5-year plot (Figure 11, left). Another interesting result of this comparison is that

the 5-year plot appears to be smoother than the 50-year plot, even though both

have the same resolution. This is caused simply by the difference in threshold.

Since the 5-year return period is a lower threshold, the pixels in this plot are

more susceptible to exceeding it. This leads to high PFFF values in the small,615

upstream basins, which tend to blend in with the background pixels.

5.1. Comparing PFFF Forcings

To test the validity of the PFFF results, the whole process was completed

using Stage IV QPEs, rather than the CAPS ensemble of QPFs. Since these

QPEs are quality-controlled estimates of gridded rainfall observations, using620

them to force the hydrologic model and define the PQPF field should provide

a reasonable comparison with the QPF-driven PFFF product. However, the

PFFF methodology was created to be used with an ensemble, which requires

multiple rainfall fields. Thus, the methodology was altered slightly to fit the

use of a deterministic Stage IV field at each hour.625

First, instead of forcing the hydrologic model with the PM, it was forced

simply with the Stage IV product at each hour. From there, the process is

the same to get the POE fields. However, a little more has to be done to

emulate the PQPF field since this field is based upon probabilities derived from

averaging individual members. To begin, similar to the CAPS members, the630

Stage IV grids are summed over the 30-hour period. A binary grid is created

where a 1 is given to a cell that exceeds the 100mm/30hr threshold. The 40-
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km neighborhood binary map is made, thus introducing some artificial spatial

uncertainty to the Stage IV product. At this point, since there is only one field,

no neighborhood probability map is created. Instead, the Gaussian smoother635

is applied directly to the neighborhood binary map to scale it. Here, a point

where all of the surrounding cells within a 40-km radius exceed the threshold,

will still receive a 100%. The final grid is a “probabilistic” QPE (PQPE) field

that is then multiplied by the POE field to create the PFFF map.

Figure 12 shows a side-by-side comparison of the QPE-forced (left) and QPF-640

forced (right) PFFFs for a 5-year return period at 1700 UTC. The reader is

reminded to focus on the stream and river pixels, not the background overland

pixels. Immediately, it is noticeable that the Stage-IV-forced PFFFs are much

more focused, while the CAPS-PM-forced PFFFs show a broader stream and

river threat. This is to be expected since the CAPS QPFs contain more spatial645

uncertainty, while the Stage IV QPEs show that the actual event was much

smaller in spatial scale than was predicted. The display of this information

is further confounded by a possible nuance related to the GAMLSS model’s

ability to fit a distribution to the return period data. For the QPE-forced

return periods, it is possible that the Gamma distribution did a better job650

fitting to the data; whereas, the QPF values were overestimated. In this sense,

the ideal outcome would be a CAPS PFFF map that would have a better fit

to the chosen distribution, and thus have a similar appearance to the Stage IV

map (i.e. muted background pixels). Future work should involve looking into

other statistical distributions with which to fit the data.655

The hourly Stage IV PFFFs have a similar temporal trend as the CAPS

PFFFs (not shown). With time, the flash-flooding threat shifts from the smaller

basins to the larger basins, with the Stage IV PFFFs ultimately highlighting one

major river basin with high probabilities (Figure 12, left). This trend was seen
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in the CAPS PFFF maps, just over a broader area. An interesting difference660

in the hourly analyses is that, overall, the Stage IV-forced simulations targeted

larger-scale basins compared to the CAPS QPFs. This, too, could be explained

by the GAMLSS model’s distribution choice, but further work should be done

to understand this result.

Finally, areas that were the most threatened in the Stage IV analysis were665

encompassed by the main threat area of the CAPS maps. This is a promising

result of the methodology, because it shows that a forecast up to 18 hours in

advance of an event can predict the area that it will occur, with more hydro-

logical relevance than just using QPF analyses. However, a downfall of the

current method is that this QPF-forced high-risk area is rather large and over-670

estimated, and may cause high false alarm rates. As described in the previous

paragraph, working with the statistical model to better depict this threat is of

utmost importance for future work.

6. Conclusions

This study offers a method for creating probabilistic flash flood forecasts675

(PFFFs) using an ensemble of high-resolution quantitative precipitation fore-

casts (QPFs). Firstly, the errors of the individual CAPS members were quan-

tified in order to understand the biases associated with the ensemble before

applying them to a hydrological framework. The SAL technique (Wernli et al.,

2008) was chosen for this analysis because it builds on traditional metrics by680

providing information about the structure, amplitude, and, particularly, the lo-

cation errors of forecast objects. Location errors are of utmost importance when

forecasting flash floods, because the smallest offset in heavy rainfall can define

whether the event is captured.

Results from the SAL analysis found that structure and amplitude errors685
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had a distinct diurnal cycle, with positive errors in both components occurring

during typical hours of afternoon and evening convection. This is indicative of

widespread rainfall being forecast, but smaller-scale, isolated convective events

occur. These errors dropped overnight and into the morning, when NWP mod-

els are traditionally better at forecasting the behavior of the atmosphere. Future690

work in the NWP community should focus on reducing these errors in struc-

ture and amplitude, while future work in the hydrological community should

incorporate them into other forecast modeling approaches. On the other hand,

the location errors of the QPF members steadily increased with forecast hour.

This result is important for flash-flood forecasting because it shows that the695

model has difficulty pinpointing the location of heavy rainfall as time moves

farther from model initialization. With a need for better lead times of flash

floods, improving how to quantify this spatial uncertainty in a hydrologically-

and meteorologically-driven product was the driving force behind our method-

ology.700

The rest of the paper discussed this new methodology, and how the PFFFs

account for locational uncertainties. The probabilities of exceedance (i.e., the

hydrological component) were calculated by first inputting the probability-

matched mean into the CREST hydrological model. The simulated streamflow

was then converted to return periods using information from the model reanal-705

ysis, and plotted against basin size. Finally, statistical modeling was performed

to interpolate probabilities of exceeding various return periods across all basin

scales. Next, the probabilistic QPF field (i.e., the meteorological component)

was calculated to account for the spatial uncertainty of the QPFs. For each

QPF member, a binary field was created to determine if a particular rainfall710

threshold was exceeded over the forecast period. A 40-km radius of influence

was then applied to each field to introduce spatial uncertainty. The final PQPF
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field became a smoothed map of the fraction of members that exceeded the

threshold within a 40-km radius. The POE and PQPF were then multiplied to

create the final PFFF, which is dependent on the return period selected for the715

POE.

If just the probabilistic QPF map was used to define a risk area, the con-

tours would be too smooth to provide any valuable flash flood information. More

importantly, the QPFs must be given a hydrological context in order to get sus-

ceptible scales. On the other hand, if just the probabilities of exceedance were720

used, it would provide detailed basin information; however, it would not focus

the threat due to its interpolation across all basin sizes. The scaling provided

by multiplying it with the PQPF field creates higher PFFFs where the QPFs

are most confident of heavy rainfall occurrence. Results showed that the final

probabilistic output compared positively with its QPE counterpart. The right725

location was highlighted by the PFFFs up to 18 hours in advance of the event,

which is the crucial factor for completing the analyses this way. However, this

location was quite broad, which could lead to high false alarm rates. Caveats

of this method include having several steps that require subjective choices, as

well as needing a better fit to a chosen statistical distribution. Furthermore,730

the developed method only deals with locational uncertainties in QPFs. Future

studies should also address errors in timing, storm structure, and amplitude.

Operational considerations need to first include sensitivity tests of the QPF

thresholds related to intensity and spatial scale. Presently, the method requires

the selection of a candidate basin within the high QPF region, which may prove735

to be difficult to automate. As such, the method represents an approach that

deals with locational uncertainties in QPF inputs that will motivate future de-

velopments in their hydrological applications.

Probabilistic forecasts have been growing in popularity over the last several
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years because of their ability to quantify uncertainty information. Additionally,740

use of QPS ensembles has increased because of the computational advances

that allow for high-enough resolution to begin to describe storm-scale, con-

vective events without needing parameterization of deep convection. Finally,

distributed hydrological models have progressed to be more realistic representa-

tions of streamflow at smaller, flash-flood scales. Combined, this methodology is745

at the forefront of utilizing the most advanced capabilities in all of these fields,

with promising implications to the field of flash flood forecasting. However,

future work should build upon these techniques to further prove operational

capabilities.
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cast Centers (RFCs) in the continental U.S. (Source: NWS/Advanced Hydrologic Prediction
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Figure 2: Hydrologic Unit Regions Domains of the 21 hydrologic unit regions, labeled by
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all days of all years, at each forecast hour. All analyses were completed within their individual
HUC regions, as defined in Figure 2, before being averaged for this plot. The forecast hour
is denoted as f00, f01, etc., where the first time step corresponds to 0000 UTC. Bottom: The
same L as the top panel, but the y-axis is scaled to better show the changes in L with time.

Figure 4: 24 hour rainfall totals over Oklahoma City. 24 hour rainfall totals over
Oklahoma City from 2000 UTC June 13th through 2000 UTC June 14th. (Source: NSSL)

Figure 5: Schematic of the methodology to create probabilistic flash flood forecasts
(PFFFs). Schematic of the methodology to create probabilistic flash flood forecasts (PFFFs).

Figure 6: 6-hour rainfall accumulations from Xue et al. 2010. 6-hour rainfall accu-
mulations valid at 18Z on June 14, 2010: (left column) ensemble means for the 4-km CAPS
SSEF and the 32-km NCEP SREF, (center column) the probability-matched means for each
ensemble, and (right column) the observed quantitative precipitation estimate (QPE) and the
12-km NCEP NAM forecast. (Image from Xue et al. 2010)
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Figure 7: Flow accumulation (km2) versus return period (years) for Oklahoma City
event. Flow accumulation (km2) versus return period (years) from 14Z (left) and 17Z (right)
on June 14, 2010. The relationship between streamflow and estimated return period was
established by a reanalysis of long-term CREST simulations with Stage IV forcing. Each blue
cross represents a grid cell within the modeled basin, with a particular flow accumulation and
estimated return period response (converted from streamflow) from forcing the CREST model
with the CAPS SSEF PM. Modeled conditional quantiles of return periods are denoted by the
colored lines, interpreted as probabilities of exceedance (POE) at certain return periods. The
red line annotated on the 17Z plot is an example of how to interpret the POE for a 20-year
return period across all basin scales. This is done by looking at which quantile lines have
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Figure 8: Schematic of how to create the neighborhood binary grid for one member.
Schematic of how to create the neighborhood binary grid for one member, which is then
summed with other member’s grids to create the final neighborhood probability map.

Figure 9: Probabilistic QPF field for the Oklahoma City event. Gaussian-weighted,
40-km neighborhood probabilistic QPF field for exceeding the threshold of 100mm/30hr during
the 30-hour period beginning at 00Z on June 14, 2010.

Figure 10: Probabilistic Flash Flood Forecasts for exceeding a return period of 5
years during the Oklahoma City event. Probabilistic Flash Flood Forecasts for exceeding
a return period of 5 years, for the June 14, 2010 Oklahoma City event at (left) 14Z and (right)
17Z.

Figure 11: PFFF comparison for exceeding 5 years and 50 years Probabilistic Flash
Flood Forecasts for exceeding a return period of: (left) 5 years, and (right) 50 years, at 15Z
on June 14, 2010. The images are zoomed in, focusing on Oklahoma and Cleveland Counties.

Figure 12: PFFF comparison for the PFFF forced using the Stage IV QPE and
forced using the CAPS ensemble. Probabilistic Flash Flood Forecasts for exceeding a
return period of 5 years, at 17Z during the June 14, 2010 Oklahoma City event. (left) PFFF
forced using the Stage IV QPE, and (right) PFFF forced using the CAPS ensemble.
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